Big Data (บิ๊กดาต้า) ใหญ่ขนาดไหนกัน ถึงแม้ว่าจะไม่ได้มีการกำหนดว่า Big Data ต้องมีขนาดเท่าไหร่ แต่การใช้งานส่วนมากมักจะอยู่ในขนาด เทราไบต์ (Terabyte: TB = 1,000 GB), เพตะไบต์ (Petabyte: PB = 1,000 TB) หรืออาจจะใหญ่ขนาด เอ็กซาไบต์ (Exabyte: EB = 1,000,000 TB) เลยก็เป็นได้
Big Data มีคุณลักษณะสำคัญอยู่ 4 อย่างคือ ต้องเป็นข้อมูลที่มีจำนวนมากขนาดมหาศาล (Volume) มีความซับซ้อนหลากหลาย (Variety) มักจะเปลี่ยนแปลงอย่างรวดเร็วอยู่ตลอดเวลา (Velocity) และยังไม่สามารถนำมาใช้เป็นข้อมูลที่สมบูรณ์เพื่อนำมาใช้ในการประกอบการพิจารณาได้ (Veracity)
ข้อมูลมากมายมหาศาลเป็นอย่างไร (Volume)
ข้อมูลจำนวนมหาศาลนี้ได้มาจากการดำเนินธุรกิจ เช่น ข้อมูลจากทุกแผนก การเงิน บัญชี ฝ่ายขาย การตลาด ลูกค้าสัมพันธ์ ฯลฯ หรือ จากบทสนทนาของเรากับลูกค้าใน Social Media ทั้งหมด ไม่ว่าจะแบบ Online หรือ offline ไปจนถึง URLs ที่คุณ Bookmarks เอาไว้ จะจัดเก็บในรูปแบบไหนประเภทใดก็ได้ ซึ่งในแต่ละวันข้อมูลใหม่พวกนี้ก็จะมีเข้ามาตลอด วันหนึ่งก็ถือว่ามากมายแล้ว ยิ่งถ้าข้อมูลที่มีจำนวนมากเข้ามาตลอดวัน 7 วันในหนึ่งอาทิตย์ เข้ามาทุกเดือนตลอดทั้งปี รวมกันหลายๆ ปีจะมากมายก่ายกองขนาดไหน
ข้อมูลที่มีความหลากหลายและซับซ้อน (Variety)
เอาเป็นว่าทุกรูปแบบที่คุณพอจะนึกออกนับเป็นความหลากหลายและความซับซ้อนได้ทั้งหมด ไม่ว่าจะเป็น Behavioral data: ข้อมูลเชิงพฤติกรรมการใช้งานต่างๆ หรือ Image & sounds: ภาพ, วีดีโอ, ข้อมูลเสียงที่ถูกบันทึกไว้ รวมทั้ง Languages: ข้อความใดๆที่เกิดขึ้นในเว็บไซต์ ไปจนถึง Records: ข้อมูลที่เก็บไว้อยู่ในสกุลไฟล์ใดๆ เช่น .bmp .gif .jpeg .png .tif .tiff .svg .doc .docx .odt .pdf .rtf .tex และอื่นๆอีกมากมาย ความหลากรูปแบบและความซับซ้อนของข้อมูลนี่เองที่เป็นส่วนหนึ่งของ Big Data
ข้อมูลที่มีการเปลี่ยนแปลงอย่างรวดเร็วอยู่ตลอดเวลา (Velocity)
อัตราการเพิ่มขึ้นของข้อมูลเป็นไปด้วยความรวดเร็ว เช่น ข้อมูลการพิมพ์สนทนา ข้อมูลการอัดภาพวีดีโอ ข้อมูลการสั่งซื้อสินค้า ข้อมูลโปรโมชั่นต่างๆ หรือ ข้อมูล Sensor เป็นต้น ลองสังเกตุว่าในทุกๆ วัน ทุกๆ ชั่วโมง หน้าเฟสบุคของเรามีการฟีดข้อมูลมามากมายแค่ไหน ดังนั้นถ้าองค์กรธุรกิจใดสามารถนำข้อมูลเหล่านั้นไปใช้ให้เกิดประโยชน์ได้ ก็จะสามารถได้เปรียบทางธุรกิจ
ข้อมูลที่มีความไม่ชัดเจน (Veracity)
เป็นข้อมูลที่มีความคลุมเครือ มีความไม่แน่นอน เนื่องจากข้อมูลมีความหลากหลายและมาจากแหล่งต่างๆ เช่น Facebook, Twitter, Youtube ซึ่งเป็นสิ่งที่ยากที่เราจะสามารถควบคุมคุณภาพของข้อมูลได้ข้อมูลที่มีคุณภาพนั้นจะต้องถูกต้องแม่นยำและเชื่อถือได้ ถ้าข้อมูลไร้คุณภาพก็จะส่งผลต่อการวิเคราะห์ต่อไป แต่เราจะทำให้ข้อมูลที่ยังไม่ได้คุณภาพนี้กลายเป็นข้อมูลที่ดีได้อย่างไร ขึ้นอยู่กับวิธีในการเก็บและกระบวนการทำ Data Cleansing
การตลาดออนไลน์ยุคนี้จำเป็นต้องอาศัยข้อมูลจาก Big Data เข้ามาเป็นตัวช่วย วิเคราะห์ และตัดสินใจในการดำเนินธุรกิจ แต่อย่างที่ทราบกันดีว่าโลกออนไลน์เต็มไปด้วยข้อมูลมหาศาล ดังนั้น การเจาะข้อมูล Insight ผู้บริโภคจึงไม่ใช่เรื่องง่ายเท่าไรนัก แต่หากจะไม่สนใจเรื่อง Big Data เลยก็ไม่ได้ และการมี Social Listening Tools เข้ามาช่วยฟังเสียงผู้บริโภคในโลกออนไลน์ อาจจะเป็นข้อได้เปรียบการแข่งขันต่อการทำธุรกิจ ซึ่งตอนนี้ใครที่กำลังสนใจอยากทดลองใช้ Social Listening Tools ทาง Mandala Analytics เปิดให้ทดลองฟรีแล้ววันนี้